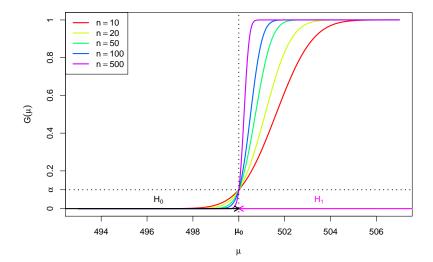
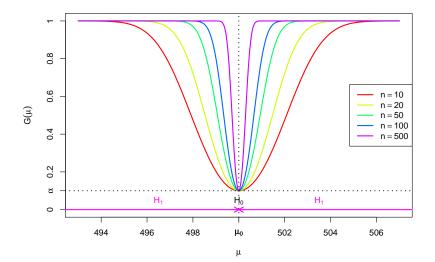
Beispiel für Gütefunktionen

Rechtsseitiger Test ($\mu_0 = 500$) zum Signifikanzniveau $\alpha = 0.10$



Beispiel für Gütefunktionen

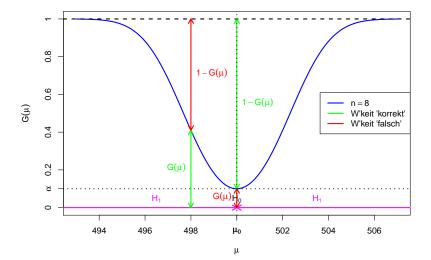
Zweiseitiger Test ($\mu_0=500$) zum Signifikanzniveau lpha=0.10



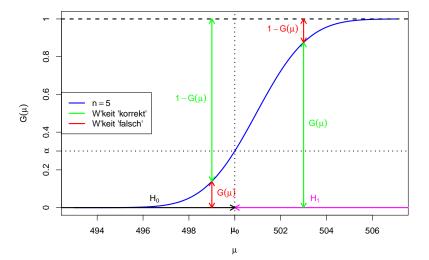
für Gauß-Tests auf den Mittelwert bei bekannter Varianz

- ullet Entscheidungsregel (nicht nur) bei Gauß-Tests stets: H_0 ablehnen $\Leftrightarrow N \in K$
- Gütefunktion $G(\mu)$ gibt also für Gauß-Tests auf den Mittelwert bei bekannter Varianz zu jedem möglichen wahren Mittelwert μ die Wahrscheinlichkeit an, eine Stichprobenrealisation zu erhalten, die zu einer Entscheidung **gegen** H_0 führt.
- Dies kann abhängig davon, ob für μ H_0 oder H_1 zutreffend ist also die Wahrscheinlichkeit einer falschen bzw. richtigen Entscheidung sein (vgl. Folie 104).
- Gängige Abkürzung
 - für Fehlerwahrscheinlichkeiten 1. Art: $\alpha(\mu)$ für $\mu \in \Theta_0$,
 - für Fehlerwahrscheinlichkeiten 2. Art: $\beta(\mu)$ für $\mu \in \Theta_1$.
- Für $\mu \in \Theta_0$ (also bei Gültigkeit der Nullhypothese für μ) gilt also:
 - Fehlerwahrscheinlichkeit 1. Art: $\alpha(\mu) = G(\mu)$
 - Wahrscheinlichkeit richtiger Entscheidung: $1 G(\mu)$
- Für $\mu \in \Theta_1$ (also bei Verletzung der Nullhypothese für μ) erhält man:
 - Fehlerwahrscheinlichkeit 2. Art: $\beta(\mu) = 1 G(\mu)$
 - Wahrscheinlichkeit richtiger Entscheidung: $G(\mu)$

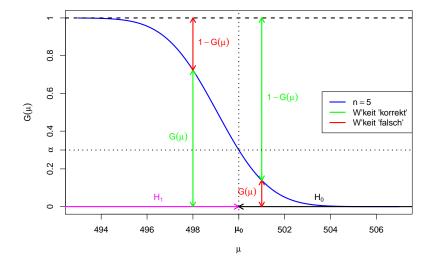
Zweiseitiger Test ($\mu_0 = 500$) zum Signifikanzniveau $\alpha = 0.10$



Rechtsseitiger Test ($\mu_0 = 500$) zum Signifikanzniveau $\alpha = 0.30$



Linksseitiger Test ($\mu_0 = 500$) zum Signifikanzniveau $\alpha = 0.30$



Interpretation von Testergebnissen I

- Durch die Asymmetrie in den Fehlerwahrscheinlichkeiten 1. und 2. Art ist Vorsicht bei Interpretation von Testergebnissen geboten!
- Es besteht ein großer Unterschied zwischen dem Aussagegehalt einer Ablehnung von H₀ und dem Aussagegehalt einer Annahme von H₀:
 - Fällt die Testentscheidung gegen H_0 aus, so hat man sollte H_0 tatsächlich erfüllt sein wegen der Beschränkung der Fehlerwahrscheinlichkeit 1. Art durch das Signifikanzniveau α nur mit einer typischerweise geringen Wahrscheinlichkeit $\leq \alpha$ eine Stichprobenrealisation erhalten, die fälschlicherweise zur Ablehnung von H_0 geführt hat.

Aber: Vorsicht vor "Über"interpretation als Evidenz für Gültigkeit von H_1 : Aussagen der Form "Wenn H_0 abgelehnt wird, dann gilt H_1 mit Wahrscheinlichkeit von mindestens $1-\alpha$ " sind unsinnig!

Fällt die Testentscheidung jedoch für H_0 aus, so ist dies ein vergleichsweise meist schwächeres "Indiz" für die Gültigkeit von H_0 , da die Fehlerwahrscheinlichkeit 2. Art nicht kontrolliert ist und typischerweise große Werte (bis $1-\alpha$) annehmen kann. Gilt also tatsächlich H_1 , ist es dennoch mit einer sehr großen Wahrscheinlichkeit möglich, eine Stichprobenrealisation zu erhalten, die fälschlicherweise nicht zur Ablehnung von H_0 führt.

Aus diesem Grund sagt man auch häufig statt " H_0 wird angenommen" eher " H_0 kann nicht verworfen werden".

Interpretation von Testergebnissen II

- ullet Die Ablehnung von H_0 als Ergebnis eines statistischen Tests wird häufig als
 - ► signifikante Veränderung (zweiseitiger Test),
 - signifikante Verringerung (linksseitiger Test) oder
 - signifikante Erhöhung (rechtsseitiger Test)

einer Größe bezeichnet. Konstruktionsbedingt kann das Ergebnis einer statistischen Untersuchung — auch im Fall einer Ablehnung von H_0 — aber **niemals** als zweifelsfreier Beweis für die Veränderung/Verringerung/Erhöhung einer Größe dienen!

- Weiteres Problem: Aussagen über die Fehlerwahrscheinlichkeiten 1. und 2.
 Art gelten nur perfekt, wenn alle Voraussetzungen erfüllt sind, also wenn
 - Verteilungsannahmen erfüllt sind (Vorsicht bei "approximativen" Tests) und
 - ▶ tatsächlich eine einfache Stichprobe vorliegt!
- Vorsicht vor "Publication Bias":
 - ▶ Bei einem Signifikanzniveau von $\alpha = 0.05$ resultiert im Mittel 1 von 20 statistischen Untersuchungen, bei denen H_0 wahr ist, konstruktionsbedingt in einer Ablehnung von H_0 .
 - ► Gefahr von Fehlinterpretationen, wenn die Untersuchungen, bei denen *H*₀ nicht verworfen wurde, verschwiegen bzw. nicht publiziert werden!

Interpretation von Testergebnissen III

"signifikant" vs. "deutlich"

- Ein "signifikanter" Unterschied ist noch lange kein "deutlicher" Unterschied!
- Problem: "Fluch des großen Stichprobenumfangs"
- Beispiel: Abfüllmaschine soll Flaschen mit 1000 ml Inhalt abfüllen.
 - Abfüllmenge schwankt zufällig, Verteilung sei Normalverteilung mit bekannter Standardabweichung $\sigma=0.5$ ml, d.h. in ca. 95% der Fälle liegt Abfüllmenge im Bereich ± 1 ml um den (tatsächlichen) Mittelwert.
 - Statistischer Test zum Niveau $\alpha = 0.05$ zur Überprüfung, ob mittlere Abfüllmenge (Erwartungswert) von 1000 ml abweicht.
- Tatsächlicher Mittelwert sei 1000.1 ml, Test auf Grundlage von 500 Flaschen.
- Wahrscheinlichkeit, die Abweichung von 0.1 ml zu erkennen (Berechnung mit Gütefunktion, siehe Folie 103): 99.4%
- Systematische Abweichung der Abfüllmenge von 0.1 ml zwar mit hoher Wahrscheinlichkeit (99.4%) signifikant, im Vergleich zur (ohnehin vorhandenen) zufälligen Schwankung mit $\sigma=0.5$ ml aber keinesfalls deutlich!

Fazit: "Durch wissenschaftliche Studien belegte signifikante Verbesserungen" können vernachlässigbar klein sein (→ Werbung…)

Testen mit p-Wert 6.5

Der p-Wert

- Hypothesentests "komprimieren" Stichprobeninformation zur Entscheidung zwischen H_0 und H_1 zu einem vorgegebenen Signifikanzniveau α .
- ullet Testentscheidung hängt von lpha ausschließlich über kritischen Bereich K ab!
- Genauere Betrachtung offenbart: Abhängigkeit zwischen α und K ist **monoton** im Sinne der Teilmengenbeziehung.
 - ▶ Gilt $\widetilde{\alpha} < \alpha$ und bezeichnen $K_{\widetilde{\alpha}}$ und K_{α} die zugehörigen kritischen Bereiche, so gilt für alle bisher betrachteten Gauß-Tests $K_{\widetilde{\alpha}} \subseteq K_{\alpha}$.
 - Unmittelbare Folge ist, dass Ablehnung von H_0 zum Signifikanzniveau $\widetilde{\alpha}$ mit $\widetilde{\alpha} < \alpha$ automatisch eine Ablehnung von H_0 zum Niveau α zur Folge hat (auf Basis derselben Stichprobeninformation)!
 - ▶ Außerdem wird K_{α} für $\alpha \to 0$ beliebig klein und für $\alpha \to 1$ beliebig groß, so dass man für jede Realisation T der Teststatistik sowohl Signifikanzniveaus α mit $T \in K_{\alpha}$ wählen kann, als auch solche mit $T \notin K_{\alpha}$.
- Zusammenfassend kann man also zu jeder Realisation T der Teststatistik das kleinste Signifikanzniveau α mit $T \in \mathcal{K}_{\alpha}$ bestimmen (bzw. das größte Signifikanzniveau α mit $T \notin \mathcal{K}_{\alpha}$). Dieses Signifikanzniveau heißt p-Wert oder empirisches (marginales) Signifikanzniveau.
- Mit der Information des p-Werts kann der Test also für **jedes beliebige Signifikanzniveau** α entschieden werden!

p-Wert bei Gauß-Tests

auf den Mittelwert bei bekannter Varianz

- Der Wechsel zwischen "N ∈ K_α" und "N ∉ K_α" findet bei den diskutierten Gauß-Tests offensichtlich dort statt, wo die realisierte Teststatistik N gerade mit (einer) der Grenze(n) des kritischen Bereichs übereinstimmt, d.h.
 - ▶ bei rechtsseitigen Tests mit $K_{\alpha} = (N_{1-\alpha}, \infty)$ für $N = N_{1-\alpha}$,
 - ▶ bei linksseitigen Tests mit $K_{\alpha} = (-\infty, -N_{1-\alpha})$ für $N = -N_{1-\alpha}$,
 - ▶ bei zweiseitigen Tests mit $K_{\alpha}=(-\infty,-N_{1-\frac{\alpha}{2}})\cup(N_{1-\frac{\alpha}{2}},\infty)$ für

$$N = \begin{cases} -N_{1-\frac{\alpha}{2}} & \text{falls } N < 0 \\ N_{1-\frac{\alpha}{2}} & \text{falls } N \ge 0 \end{cases}.$$

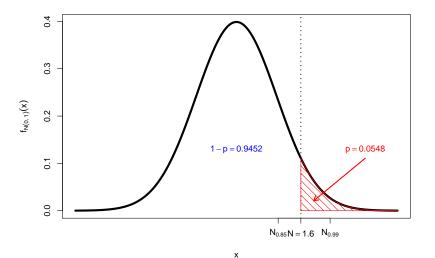
- ullet Durch Auflösen nach lpha erhält man
 - für rechtsseitige Tests den p-Wert $1 \Phi(N)$,
 - für linksseitige Tests den p-Wert Φ(N),
 - für zweiseitige Tests den p-Wert

$$\left. \begin{array}{ll} 2 \cdot \Phi(N) = 2 \cdot (1 - \Phi(-N)) & \text{falls } N < 0 \\ 2 \cdot (1 - \Phi(N)) & \text{falls } N \ge 0 \end{array} \right\} = 2 \cdot (1 - \Phi(|N|))$$

sowie die alternative Darstellung $2 \cdot \min\{\Phi(N), 1 - \Phi(N)\}.$

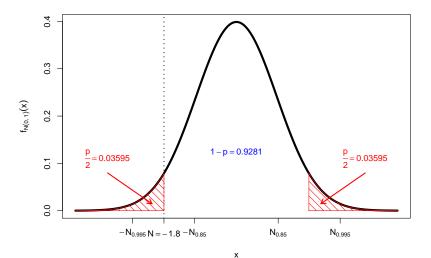
Beispiel: p-Werte bei rechtsseitigem Gauß-Test (Grafik)

Realisierte Teststatistik N = 1.6, p-Wert: 0.0548



Beispiel: p-Werte bei zweiseitigem Gauß-Test (Grafik)

Realisierte Teststatistik N = -1.8, p-Wert: 0.0719



Entscheidung mit p-Wert

• Offensichtlich erhält man auf der Grundlage des *p*-Werts *p* zur beobachteten Stichprobenrealisation die einfache Entscheidungsregel

$$H_0$$
 ablehnen \Leftrightarrow $p < \alpha$

für Hypothesentests zum Signifikanzniveau α .

- Sehr niedrige p-Werte bedeuten also, dass man beim zugehörigen Hypothesentest H_0 auch dann ablehnen würde, wenn man die maximale Fehlerwahrscheinlichkeit 1. Art sehr klein wählen würde.
- Kleinere *p*-Werte liefern also stärkere Indizien für die Gültigkeit von H_1 als größere, **aber** (wieder) Vorsicht vor Überinterpretation: Aussagen der Art "Der p-Wert gibt die Wahrscheinlichkeit für die Gültigkeit von H_0 an" sind unsinnig!

Warnung!

Bei der Entscheidung von statistischen Tests mit Hilfe des p-Werts ist es **unbedingt** erforderlich, das Signifikanzniveau α **vor** Berechnung des p-Werts festzulegen, um nicht der Versuchung zu erliegen, α im Nachhinein so zu wählen, dass man die "bevorzugte" Testentscheidung erhält!

Tests und Konfidenzintervalle

- Enger Zusammenhang zwischen zweiseitigem Gauß-Test und (symmetrischen)
 Konfidenzintervallen für den Erwartungswert bei bekannter Varianz.
- ullet Für Konfidenzintervalle zur Vertrauenswahrscheinlichkeit 1-lpha gilt:

$$\begin{split} \widetilde{\mu} \in \left[\overline{X} - \frac{\sigma}{\sqrt{n}} \cdot N_{1 - \frac{\alpha}{2}}, \overline{X} + \frac{\sigma}{\sqrt{n}} \cdot N_{1 - \frac{\alpha}{2}} \right] \\ \Leftrightarrow \qquad \widetilde{\mu} - \overline{X} \in \left[-\frac{\sigma}{\sqrt{n}} \cdot N_{1 - \frac{\alpha}{2}}, \frac{\sigma}{\sqrt{n}} \cdot N_{1 - \frac{\alpha}{2}} \right] \\ \Leftrightarrow \qquad \frac{\widetilde{\mu} - \overline{X}}{\sigma} \sqrt{n} \in \left[-N_{1 - \frac{\alpha}{2}}, N_{1 - \frac{\alpha}{2}} \right] \\ \Leftrightarrow \qquad \frac{\overline{X} - \widetilde{\mu}}{\sigma} \sqrt{n} \in \left[-N_{1 - \frac{\alpha}{2}}, N_{1 - \frac{\alpha}{2}} \right] \end{split}$$

- Damit ist $\widetilde{\mu}$ also **genau dann** im Konfidenzintervall zur Sicherheitswahrscheinlichkeit $1-\alpha$ enthalten, **wenn** ein zweiseitiger Gauß-Test zum Signifikanzniveau α die Nullhypothese $H_0: \mu = \widetilde{\mu}$ **nicht** verwerfen würde.
- Vergleichbarer Zusammenhang auch in anderen Situationen.

Zusammenfassung: Gauß-Test für den Mittelwert

bei bekannter Varianz

Anwendungs- voraussetzungen	exakt: $Y \sim \mathcal{N}(\mu, \sigma^2)$ mit $\mu \in \mathbb{R}$ unbekannt, σ^2 bekannt approximativ: $E(Y) = \mu \in \mathbb{R}$ unbekannt, $Var(Y) = \sigma^2$ bekannt X_1, \ldots, X_n einfache Stichprobe zu Y		
Nullhypothese Gegenhypothese	$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	$H_0: \mu \leq \mu_0 \ H_1: \mu > \mu_0$	$H_0: \mu \ge \mu_0$ $H_1: \mu < \mu_0$
Teststatistik	$N = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$		
Verteilung (H ₀)	${\sf N}$ für $\mu=\mu_0$ (näherungsweise) ${\sf N}(0,1)$ -verteilt		
Benötigte Größen	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$		
Kritischer Bereich zum Niveau α	$(-\infty, -N_{1-\frac{\alpha}{2}}) \\ \cup (N_{1-\frac{\alpha}{2}}, \infty)$	$(\mathit{N}_{1-lpha},\infty)$	$(-\infty, -N_{1-lpha})$
<i>p</i> -Wert	$2 \cdot (1 - \Phi(\mathcal{N}))$	$1 - \Phi(N)$	Φ(N)

Approximativer Gauß-Test für Anteilswert p

 Wichtiger Spezialfall des (approximativen) Gauß-Tests für den Mittelwert einer Zufallsvariablen mit bekannter Varianz:

Approximativer Gauß-Test für den Anteilswert p einer alternativverteilten Zufallsvariablen

- Erinnerung: Für alternativverteilte Zufallsvariablen $Y \sim B(1,p)$ war Konfidenzintervall für Anteilswert p ein Spezialfall für Konfidenzintervalle für Mittelwerte von Zufallsvariablen mit **unbekannter** Varianz.
- **Aber:** Bei der Konstruktion von Tests für $H_0: p = p_0$ gegen $H_1: p \neq p_0$ für ein vorgegebenes p_0 (sowie den einseitigen Varianten) spielt Verteilung der Teststatistik unter H_0 , insbesondere für $p = p_0$, entscheidende Rolle.
- Da Varianz für $p=p_0$ bekannt \rightsquigarrow approximativer Gauß-Test geeignet. Für $p=p_0$ gilt genauer $\text{Var}(Y)=\text{Var}(X_i)=p_0\cdot(1-p_0)$ und damit

$$\operatorname{\sf Var}(\widehat{p}) = \operatorname{\sf Var}\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n^2} \cdot n \cdot \operatorname{\sf Var}(Y) = \frac{p_0 \cdot (1-p_0)}{n} \ .$$

Als Testgröße erhält man also:
$$N=rac{\widehat{p}-p_0}{\sqrt{p_0\cdot(1-p_0)}}\sqrt{n}$$

Zusammenfassung: (Approx.) Gauß-Test für Anteilswert p

Anwendungs- voraussetzungen	approximativ: $Y \sim B(1,p)$ mit $p \in [0,1]$ unbekannt X_1,\ldots,X_n einfache Stichprobe zu Y		
Nullhypothese Gegenhypothese	$H_0: p = p_0 H_1: p \neq p_0$	$H_0: p \le p_0 \ H_1: p > p_0$	$H_0: p \ge p_0 \ H_1: p < p_0$
Teststatistik	${\sf N}=rac{\widehat{ ho}- ho_0}{\sqrt{ ho_0\cdot(1- ho_0)}}\sqrt{n}$		
Verteilung (H_0)	N für $p=p_0$ näherungsweise $N(0,1)$ -verteilt		
Benötigte Größen	$\widehat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$		
Kritischer Bereich zum Niveau α	$(-\infty, -N_{1-\frac{\alpha}{2}}) \\ \cup (N_{1-\frac{\alpha}{2}}, \infty)$	$(\mathit{N}_{1-lpha},\infty)$	$(-\infty, -N_{1-lpha})$
<i>p</i> -Wert	$2 \cdot (1 - \Phi(\mathcal{N}))$	$1-\Phi(N)$	Φ(N)

Beispiel: Bekanntheitsgrad eines Produkts

- Untersuchungsgegenstand: Hat sich der Bekanntheitsgrad eines Produkts gegenüber bisherigem Bekanntheitsgrad von 80% reduziert, nachdem die Ausgaben für Werbemaßnahmen vor einiger Zeit drastisch gekürzt wurden?
- Annahmen: Kenntnis des Produkts wird durch $Y \sim B(1, p)$ beschrieben, wobei p als Bekanntheitsgrad des Produkts aufgefasst werden kann.
- Stichprobeninformation aus Realisation einfacher Stichprobe (!) zu Y: Unter n=500 befragten Personen kannten 381 das Produkt $\leadsto \widehat{p}=0.762$.
- Gewünschtes Signifikanzniveau (max. Fehlerwahrscheinlichkeit 1. Art): $\alpha = 0.05$

Geeigneter Test: (Approx.) linksseitiger Gauß-Test für den Anteilswert p

- **1** Hypothesen: $H_0: p \ge p_0 = 0.8$ gegen $H_1: p < p_0 = 0.8$
- ② Teststatistik: $N = \frac{\widehat{p} p_0}{\sqrt{p_0 \cdot (1 p_0)}} \sqrt{n} \stackrel{\bullet}{\sim} N(0, 1)$, falls H_0 gilt $(p = p_0)$
- Kritischer Bereich zum Niveau $\alpha = 0.05$: $K = (-\infty, -N_{0.95}) = (-\infty, -1.645)$
- Realisierter Wert der Teststatistik: $N = \frac{0.762 0.8}{\sqrt{0.8 \cdot (1 0.8)}} \sqrt{500} = -2.124$
- **1** Entscheidung: $N \in K \rightsquigarrow H_0$ wird abgelehnt, der Bekanntheitsgrad des Produkts hat sich signifikant reduziert.

t-Test für den Mittelwert

bei unbekannter Varianz

 Konstruktion des (exakten) Gauß-Tests für den Mittelwert bei bekannter Varianz durch Verteilungsaussage

$$N := rac{\overline{X} - \mu}{\sigma} \sqrt{n} \sim N(0, 1) \; ,$$

falls X_1, \ldots, X_n einfache Stichprobe zu normalverteilter ZV Y.

 Analog zur Konstruktion von Konfidenzintervallen für den Mittelwert bei unbekannter Varianz: Verwendung der Verteilungsaussage

$$t:=rac{\overline{X}-\mu}{S}\sqrt{n}\sim t(n-1) \qquad ext{mit} \qquad S=\sqrt{rac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2} \; ,$$

falls X_1, \ldots, X_n einfache Stichprobe zu normalverteilter ZV Y, um geeigneten Hypothesentest für den Mittelwert μ zu entwickeln.

- Test lässt sich genauso wie Gauß-Test herleiten, lediglich
 - Verwendung von S statt σ ,
 - ▶ Verwendung von t(n-1) statt N(0,1).

- Beziehung zwischen symmetrischen Konfidenzintervallen und zweiseitigen Tests bleibt wie beim Gauß-Test erhalten.
- ullet Wegen Symmetrie der t(n-1)-Verteilung bleiben auch alle entsprechenden "Vereinfachungen" bei der Bestimmung von kritischen Bereichen und p-Werten gültig.
- p-Werte können mit Hilfe der Verteilungsfunktion der t(n-1)-Verteilung bestimmt werden (unproblematisch mit Statistik-Software).
- Zur Berechnung der Gütefunktion: Verteilungsfunktion der "nichtzentralen" t(n-1)-Verteilung benötigt (unproblematisch mit Statistik-Software).
- Zur Berechnung von p-Werten und Gütefunktionswerten für große n: Näherung der t(n-1)-Verteilung durch Standardnormalverteilung bzw. der nichtzentralen t(n-1)-Verteilung durch Normalverteilung mit Varianz 1 (vgl. Gauß-Test) möglich.
- Analog zu Konfidenzintervallen:
 Ist Y nicht normalverteilt, kann der t-Test auf den Mittelwert bei unbekannter Varianz immer noch als approximativer (näherungsweiser) Test verwendet werden.

Zusammenfassung: t-Test für den Mittelwert

bei unbekannter Varianz

Anwendungs- voraussetzungen	exakt: $Y \sim \mathcal{N}(\mu, \sigma^2)$ mit $\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}_{++}$ unbekannt approximativ: $E(Y) = \mu \in \mathbb{R}, \text{Var}(Y) = \sigma^2 \in \mathbb{R}_{++}$ unbekannt X_1, \ldots, X_n einfache Stichprobe zu Y		
Nullhypothese	$H_0: \mu = \mu_0$	$H_0: \mu \leq \mu_0$	$H_0: \mu \geq \mu_0$
Gegenhypothese	$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu < \mu_0$
Teststatistik	$t = \frac{\overline{X} - \mu_0}{S} \sqrt{n}$		
Verteilung (H_0)	t für $\mu=\mu_0$ (näherungsweise) $t(n-1)$ -verteilt		
Benötigte Größen	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$		
	$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2} = \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \overline{X}^2 \right)}$		
Kritischer Bereich	$(-\infty, -t_{n-1;1-\frac{\alpha}{2}})$	$(t_{n-1;1-lpha},\infty)$	$(-\infty, -t_{n-1;1-\alpha})$
zum Niveau α	$\cup (t_{n-1;1-\frac{\alpha}{2}},\infty)$		
p-Wert	$2 \cdot (1 - F_{t(p-1)}(t))$	$1 - F_{t(n-1)}(t)$	$F_{t(n-1)}(t)$

Beispiel: Durchschnittliche Wohnfläche

- Untersuchungsgegenstand: Hat sich die durchschnittliche Wohnfläche pro Haushalt in einer bestimmten Stadt gegenüber dem aus dem Jahr 1998 stammenden Wert von 71.2 (in $[m^2]$) **erhöht**?
- Annahmen: Verteilung der Wohnfläche Y im Jahr 2009 unbekannt.
- Stichprobeninformation: Realisation einer einfachen Stichprobe vom Umfang n=400 zu Y liefert Stichprobenmittel $\overline{x}=73.452$ und Stichprobenstandardabweichung s=24.239.
- Gewünschtes Signifikanzniveau (max. Fehlerwahrscheinlichkeit 1. Art): $\alpha=0.05$

Geeigneter Test:

Rechtsseitiger approx. t-Test für den Mittelwert bei unbekannter Varianz

- **1** Hypothesen: $H_0: \mu \le \mu_0 = 71.2$ gegen $H_1: \mu > \mu_0 = 71.2$
- ② Teststatistik: $t = \frac{\overline{X} \mu_0}{S} \sqrt{n} \stackrel{\bullet}{\sim} t(399)$, falls H_0 gilt $(\mu = \mu_0)$
- **3** Kritischer Bereich zum Niveau $\alpha = 0.05$: $K = (t_{399;0.95}, \infty) = (1.649, \infty)$
- **1** Realisierter Wert der Teststatistik: $t = \frac{73.452 71.2}{24.239} \sqrt{400} = 1.858$
- **1** Entscheidung: $t \in K \rightsquigarrow H_0$ wird abgelehnt; Test kommt zur Entscheidung, dass sich durchschnittliche Wohnfläche gegenüber 1998 erhöht hat.

Beispiel: p-Wert bei rechtsseitigem t-Test (Grafik)

Wohnflächenbeispiel, realisierte Teststatistik t = 1.858, p-Wert: 0.032

